首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213869篇
  免费   21613篇
  国内免费   15181篇
电工技术   33362篇
技术理论   9篇
综合类   22089篇
化学工业   12243篇
金属工艺   8419篇
机械仪表   20246篇
建筑科学   20295篇
矿业工程   8711篇
能源动力   5926篇
轻工业   5438篇
水利工程   7131篇
石油天然气   6996篇
武器工业   3783篇
无线电   17659篇
一般工业技术   12727篇
冶金工业   8460篇
原子能技术   1564篇
自动化技术   55605篇
  2024年   359篇
  2023年   2516篇
  2022年   4263篇
  2021年   5224篇
  2020年   6120篇
  2019年   4858篇
  2018年   4496篇
  2017年   6387篇
  2016年   7281篇
  2015年   7984篇
  2014年   14242篇
  2013年   12688篇
  2012年   16147篇
  2011年   16966篇
  2010年   12978篇
  2009年   13251篇
  2008年   13148篇
  2007年   16157篇
  2006年   14376篇
  2005年   12424篇
  2004年   10226篇
  2003年   8944篇
  2002年   7194篇
  2001年   6046篇
  2000年   5171篇
  1999年   4083篇
  1998年   3129篇
  1997年   2719篇
  1996年   2203篇
  1995年   1891篇
  1994年   1587篇
  1993年   1158篇
  1992年   924篇
  1991年   708篇
  1990年   555篇
  1989年   501篇
  1988年   346篇
  1987年   200篇
  1986年   141篇
  1985年   136篇
  1984年   187篇
  1983年   140篇
  1982年   138篇
  1981年   87篇
  1980年   69篇
  1979年   83篇
  1978年   51篇
  1977年   51篇
  1964年   14篇
  1959年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
In process industry, predictive control approaches have been widely used for nonlinear production processes. Practically, the predictor in a predictive controller is extremely important since it provides future states for the optimization problem of controllers. The conventional predictive controller with precise mathematical predictors approximating the state space of physical systems is difficult and time-consuming for nonlinear production processes, and it performs poorly over a wide range of working conditions and with significant disturbances. To address the challenges, the trend of applying artificial intelligence emerges. However, the industrial process-specific knowledge is ignored in most cases. In this study, a predictive controller with a control process knowledge-based random forest (RF) model is proposed. Specifically, working data are clustered at first to handle diverse working conditions. Then, a process knowledge-based forest predictor, namely MIW-RF model with a redesigned cascading RF structure, is proposed to incorporate control process knowledge into modeling. Thus, future states of controlled variables could be more accurately acquired for the optimizer. A simplified version of the predictive model is also developed with quick model training and updating. The proposed predictive methods are finally introduced into the controller design. According to the empirical results, the proposed methods deliver a better control performance against benchmarks, including more accurate anticipated controlled-variable responses, better set-point tracking and disturbance rejection capability.  相似文献   
22.
The gas purging states affect electricity output and energy storage capacity of unitized regenerative fuel cells. In this study, a model of unitized regenerative fuel cell is established. Cell voltages and operating temperatures influences on the dynamic distribution of thermal fluid during purging process and the discharge of residual liquid water in electrolytic cell mode are investigated. The motivation of the present study is better understanding the gas purging characteristics and its effect on reaction behaviors of unitized regenerative fuel cells. Simulation results reveal a significant influence of purging gas temperature on the water flooding and a great effect of operating voltage on the water diffusion. The operating temperature of electrolytic cell model almost has little effect on purging results at different cell temperature and the same purging gas temperature. When the purging gas temperature is changed, higher temperatures of cell and purging gas facilitate liquid water discharging out from the cell regions. In cell water flooding situation, when having large liquid content, the purging gas has little effects on the water expelling process.  相似文献   
23.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
24.
本文简介多功能液压支架拖运车的电控系统,包括电控箱的设计和主要电气元件的性能和选择依据。此电控系统能够一般电控系统的各种功能和保护,而且能够通过摄像头做到操作盲区和使用遥控器进行远程控制,从而提高液压支架的拖运效率、降低劳动强度和提高安全保障。  相似文献   
25.
Robust excitation of a large spin ensemble is a long-standing problem in the field of quantum information science and engineering and presents a grand challenge in quantum control. A formal theoretical treatment of this task is to formulate it as an ensemble control problem defined on an infinite-dimensional space. In this paper, we present a distinct perspective to understand and control quantum ensemble systems. Instead of directly analyzing spin ensemble systems defined on a Hilbert space, we transform them to a space where the systems have reduced dimensions with distinctive network structures through the introduction of moment representations. In particular, we illustrate the idea of moment quantization for a spin ensemble and illuminate how this technique leads to a dynamically equivalent control system of moments. This equivalence enables the control of spin ensembles through the control of their moment systems, which in turn creates a new control analysis and design paradigm for quantum ensemble systems based on the use of truncated moment systems.  相似文献   
26.
Acid–base transport is integral to many important interfacial reactions in various fields of chemistry, but its theoretical foundation is lacked. Herein, a common acid–base transport model is established owing to the success in deriving buffer transport equations. This model is applicable to most buffer systems by flexibly integrating the transport equations in terms of buffer components, and is verified through the model relationships of buffer transport limiting current by using hydrogen evolution reaction experiments. Based on model calculations, two diagram approaches are proposed to depict the dynamic pH response and aid buffer operation optimizations. The model and methods allow us to quantify the rate-limiting effect of acid–base transport on interfacial reactions and to precisely control the effect through medium regulations. Furthermore, the model has laid the foundation of dynamic pH effect on species transformation and process mechanism, which can be of wide interest in the chemistry encompassing interfacial reactions.  相似文献   
27.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
28.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   
29.
This paper considers the shared path following control of an unmanned ground vehicle by a single person. A passive measure of human intent is used to blend the human and machine inputs in a mixed initiative approach. The blending law is combined with saturated super-twisting sliding mode speed and heading controllers, so that exogenous disturbances can be counteracted via equivalent control. It is proven that when the proposed blending law is used, the combined control signals from both the human and automatic controller respect the actuator magnitude constraints of the machine. To demonstrate the approach, shared control experiments are performed using an unmanned ground vehicle, which follows a lawn mower pattern shaped path.  相似文献   
30.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号